Inequality involving triangles

https://www.linkedin.com/groups/8313943/8313943-6412947313743970305
In a triangle $A B C$, with usual notions $p=(a+b+c) / 2$ and inradius r, prove that $\sum \sqrt{\frac{a b(p-c)}{p}} \geq 6 r$.
Solution by Arkady Alt, San Jose, California, USA.
Noting that $\sqrt{\frac{(p-b)(p-c)}{b c}}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}} \cdot \sqrt{\frac{p}{b c(p-a)}}=$
$r \sqrt{\frac{p}{b c(p-a)}}$ we obtain that $\sum \sqrt{\frac{b c(p-a)}{p}} \geq 6 r \Leftrightarrow \sum \frac{1}{r} \sqrt{\frac{b c(p-a)}{p}} \geq 6 \Leftrightarrow$
(1) $\quad \sum \sqrt{\frac{b c}{(p-b)(p-c)}} \geq 6$. Since by Cauchy Inequality
$\sum \sqrt{\frac{(p-b)(p-c)}{b c}} \cdot \sum \sqrt{\frac{b c}{(p-b)(p-c)}} \geq 9$ remains to prove inequality $9 \geq 6 \sum \sqrt{\frac{(p-b)(p-c)}{b c}} \Leftrightarrow \sum \sqrt{\frac{(p-b)(p-c)}{b c}} \leq \frac{3}{2}$.
By AM-GM Inequality we have $\sum \sqrt{\frac{(p-b)(p-c)}{b c}} \leq \sum \frac{1}{2}\left(\frac{p-b}{c}+\frac{p-c}{b}\right)=$ $\sum \frac{1}{2}\left(\frac{p-b}{c}+\frac{p-a}{c}\right)=\frac{1}{2} \sum \frac{2 p-a-b}{c}=\frac{3}{2}$.

